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I. INTRODUCTION

\V
Graphite-aluminum composites are being considered for numerous

applications that require sufficient transverse strength to allow unidirectional
fiber orientation for maximum stiffness and dimensional stability. The fiber-

matrix bond strength must be maximized in order to achieve the required

transverse properties. A recent study of the effect of processing and fiber
type on the transverse strength of graphite-aluminum composites indicates

that transverse fracture strength is dependent upon the nature of fiber-matrix
interaction (Ref. I). The transverse strengths for these composites are in

the range 5 to 40 MPa, depending upon the processing method and fiber type.

An understanding of the fracture behavior of the interfaces between fiber and
matrix is essential before processing improvements can be made to increase

transverse composite strength.

The objective of this work *a to establish experimental techniques

to permit the determination of the fract re paths resulting from transverse
failure and the identification of the chemica tjpecies of the fracture phases.

The fine fiber size (5 to 15 iLm) and the extren'4ely thin fiber-matrix interface
region (0. 05 to 0. 2 4m) of these composites dictated the use of the high-

resolution scanning Auger microprobe (SAM) for th'is study.
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II. EXPERIMENTS

The graphite-aluminum composites examined in this study were produced

by the titanium-boron chemical vapor deposition (Ti-B CVD) method. A de-

scription of this process can be found in a recent review article (Ref. 2). In

this process, graphite fibers are coated with a thin layer (less than 0. 1 rm)

of titanium and boron prior to being infiltrated by molten aluminum. The

coating promotes wetting with the molten aluminum yet provides a sufficient

reaction barrier to prevent excessive aluminum carbide formation and hence

fiber degradation. The basic infiltration process is designated S. Two other

modifications were also examined. These include hydrogen precleaning of

the graphite fiber prior to the Ti-B coating step, the H process, and pyrolytic

carbon coating prior to the Ti-B coating step, the C process. The initial

product of these processes is a composite wire approximately 1.5 mm in

diameter. The wires are subsequently consolidated by the diffusion bonding

into plates for mechanical testing and analysis. The composite materials

consist of Thornel 50 fibers in an aluminum alloy 201 matrix. The 201 alloy

(4.7 Cu, 0.8 Ag, 0.4 Mn, 0.35 Mg, 0.4 Zn, and 0.25 Ti) was selected because

it represents the baseline alloy composition for which there is the greatest

amount of the mechanical properties data. The Thornel 50 fiber is a highly

graphitic rayon-precursor-based fiber with the following properties: approx-

imately 6-pým diameter, a crenulated cross section, 2400 Iý$Pa tensile

strength, 420 GPa Young's modulus, and 1. 67 g/cm3 density.

In order to unambiguously identify the fractured phases, the specimens

were fractured in situ within the SAM under 10"8 Pa vacuum to prevent con-

tamination of the fracture surface. Both the precursor wires and the consoli-

dated composite materials were notched and fractured under impact loading

conditions. The surfaces'were then thoroughly examined to determine the

reproducibility of the fracture path chemistry. A resolution of 0. 5 4m is

required for an effective focus on areas of interest on the fiber surface.
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The SAM instrument used in these studies was the Physical Electronics

Model 590 system. The spacial resolution of the system is approximately

0. 2 tim. An electron beam spot size of about 0. 5 ýLm was used to improve the

signal to noise of the Auger spectrum. This resolution makes it possible to

perform detailed studies on the fracture surface in the vicinity of the 5- to

10-4tm graphite fibers. Descriptions of Auger electron spectroscopy (AES)

are given in review articles (Ref. 3). The other prime advantage of using

AES for this study is that the Auger electrons originate about 0. 001 to

0.002 4m into the material. Therefore, the fracture-surface chemical analy-

sis directly identifies the chemistry associated with the fracture path through

the composite.

Micrographs of the fracture surfaces were made in the SAM while it

was operating in the secondary and adsorbed current modes. Higher-resolu-

tion scanning electron micrographs were made with the scanning electron

microscope. Elemental mappings of the fracture surface were made in both

one and two dimensions. Examples of the two-dimensional mapping of car-

bon, oxygen, magnesium, and aluminum are shown in Fig. 1.

Combined AES and inert argon ion sputtering profiles, normal to the

fracture surface, were measured to determine the chemistry near the fracture

surface. Sputtering profiles were obtained by means of multiplexing techniques.

The intensity of the dN(E)/dE peaks for six elements was monitored as the

fracture surface was sputtered. A typical fracture of graphite -aluminum com-

posite, where the chemistry of the fracture surface was obtained adjacent to

the fiber and adjacent to the matrix, is indicated by the arrows in Fig. 2.

Depth profiles were obtained on different samples that were sputtered back

either to the fiber or to the graphite -aluminum matrix. The depths were cali-

brated on the basis of standard samples of tantalum pentoxide and are accurate

only to about a factor of 2 because (1) different sputtering rates are asso-

ciated with the chemistry of the composite fracture surface, and (2) the

fracture surface is extremely rough.
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Fig. 2. SEM of Composite with Locations for
SAM Analysis on Fiber and on Matrix
Above and Behind Fiber Shown
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The data were evaluated in two ways. The first method was to use

peak-to-peak intensities of the dN(E)/dE spectra combined with the senpitivity

factors from the Handbook of Auger Electron Spectroscopy (Ref. 4) in order

to obtain some degree of quantitative chemical analysis. The second part of

the analysis involved the peak shapes of the various elements. The change in

peak shape gives clues to the nature of the bonding of the elements. The

dN(E)/dE spectrum for aluminum oxide and metal is given in Fig. 3. The

aluminum oxide peak was detected at the fracture surface, and the aluminum

metal peak was detected in the matrix after the oxide was removed by

sputtering.
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Fig. 3. Comparison of Al Auger Peaks in the Oxide and
Metal Matrix Phases
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I. RESULTS AND DISCUSSION

The most consistent result obtained in these experiments was the

presence of the aluminum-magnesium oxide on the fracture surfaces of

graphite-aluminum composites. In some cases, the fracture surface seemed

to be predominantly in the oxide region. An AES spectrum taken from a frac-

tured T 50/201 specimen is shown in Figs. 4 and 5. The AES spectrum

shown in Fig. 4 is from the fiber side of the fractured interface, as shown in

Fig. 2. Primarily, aluminum-magnesium oxide is present on the surface.

Some graphite is seen in the spectrum, and it represents about 20 at%. The

AES spectrum of Fig. 5 is from the matrix side of the fractured interface

and is almost totally covered with the aluminum magnesium oxide. Investiga-

tion of the AES peak shapes (Fig. 3) for aluminum clearly revealed that

virtually all of the aluminum and magnesium is present in the oxidized state.

The other elements of interest at the interface are the small amount of

titanium, copper, and boron. These will be discussed in more detail sub-

sequently in reference to the inert argon in sputtering profiles.

The fracture that was dominant throughout the oxide layer (Figs. 4 and

5) was only one type of failure. Another type of failure occurred where the

fracture apparently weaved from the oxide to the graphite interface or into

the graphite and back again. In these cases, the fiber side of the fracture had

a very h'gh carbon content; the matrix side had significant carbon content but

still had a large fraction of aluminum-magnesium oxide. There was some

indication of fracture back into the aluminum matrix, as the spectrum indi-

cated the presence of some aluminum metal. Figure 6 is a schematic of the

envisioned fracture path. The SAM results strongly indicate that the weaving

through the fiber-matrix interface had a periodicity smaller than the approxi-

mately 0. 5-ýam beam size used for these experiments, which was true for

most of the materials studied. Only the relative amounts of graphite, oxide,

and matrix varied. Where fiber-matrix bonding appeared to be lacking, the

fiber side was totally graphite, and the matrix side totally oxide.
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The second significant result was obtained from the inert argon ion

sputtering experiments. A typical profile for sputtering into the matrix side

of the fractured fiber-matrix interface is shown in Fig. 7. Several significant

features are evident. The first is that, in all cases, the surface magnesium

and oxygen sputtered off at comparable rates, indicating that the magnesium

was segregated to the interface as an oxide. The magnesium content in the

alloys was significantly lower than in the oxide.

The second feature was that, in the cases of the Ti-B CVD-coated fibers,

the titanium and boron were at low concentrations on the fracture surface and

would reach a peak during sputtering into the matrix side of the fracture after

the amount of aluminum-magnesium oxide was greatly reduced by the sputter-

ing, indicating that when the oxide was formed it displaced the CVD titanium

and boron from the fiber toward the matrix side of the oxide (Fig. 6).

The excess copper also indicates a maximum inside the oxide. In some

samples, the copper maximum was deeper into the matrix than the titanium

and boron and in others was coincident with the titanium and boron profile

peak.

Another feature of the sputtering profile is the change in the shape of

the AES peak for aluminum as it goes from the predominantly oxide shape on

the fracture surface to the metallic aluminum in the matrix (Fig. 3). Sputtering

into the graphite side of the fiber interface fracture indicates that when the

oxide is removed, only the graphite fiber is present. No other significant

layers were found.

The results obtained in this study indicate that the fracture path in the

graphite-aluminum composites is not chemically simple. The presence of an

oxide as a significant part of the fracture path is surprising. The origin of

the oxide has not been clearly established but is most likely formed during the

aluminum-infiltration process. It is not clear at present whether or not the

oxide is deleterious in terms of the transverse strength. It does seem to

promote adhesion to the graphite, particularly in those cases where the frac-

ture is through the oxide. The displacement of the titanium and boron from

the graphite interface is also significant.
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At present, there is only meager data to relate fracture phase and

fracture path to transverse strength. The difference in composition between

the fiber side and the matrix side of the fracture of two composite wires was

examined for T 300/201 (C), which had 10 MPa transverse strength, and

T 50/201 (S) or T 50/ZOi (H), which had 20 MPa transverse strength. The

greatest difference in composition occurred for the lower transverse strength

composite (Fig. 8), indicating that the fracture path occurred between the

distinct phases such as oxide and graphite fiber. The fracture path in the

higher transverse-strength composite apparently was through a specific phase,

in this case, the aluminum-magnesium oxide.

The combined oxide and titanium and boron displacement indicates that

surface thermodynamics must play a dominant role in the kinetics of the

interface formation. The results obtained here only concern the end of the

process, a condition that is nonequilibirum, and does not define the process

path that caused the complex interface that results in the equally complex

fracture path. These results can be used as a basis for a much more detailed

analysis of the fracture behavior as it relates to the chemical makeup of the

interface.
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IV. CONCLUSIONS

The results of this study are summarized as follows:

1. Scanning Auger microprobe techniques are capable of
identifying chemical species at the fracture interface
of graphite-aluminum composites.

2. The transverse fracture path in properly infiltrated
composites is through the reaction layer between the
fiber and the matrix. The actual path is complex and
meanders between the fiber, the reaction zone, and
the matrix.

3. In many cases, the fracture path was through an
aluminum-magnesium oxide within the reaction layer.
The results of Auger analysis indicates that the mag-
nesium was totally in the oxidized form whereas the
aluminum was present both as an oxide and as a metal.

4. Combined Auger analysis and inert ion sputtering indi-
cate that the reaction zone of the graphite-aluminum
composite consisted of an oxide-rich region adjacent
to the fiber with the titanium and boron-rich region
between the oxide and the matrix.

5. The highest transverse strength was associated with
those composites for which the fracture path was pre-
dominantly through the oxide layer rather than between
the fiber-oxide interface.

Preceding Page Blank
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